芯片开发者在项目中往往会踩很多“坑”:资源少、时间短、任务紧、多项目并行开发,要满足交付时间和设计需求的平衡,压力重重。开发人才短缺的问题依然热度不减,同时开发工作又愈发复杂,范围也越来越广。摩尔定律的放缓限制了半导体的发展,而数字世界对电子设备的要求却在不断提高。
(相关资料图)
开发者如何才能开发出足以应对未来挑战的复杂芯片呢?
凭借屡获殊荣的新思科技DSO.ai™AI芯片设计应用的引领,新思科技推出了业界首个全栈式AI驱动型EDA解决方案Synopsys.ai,现已搭载功能验证解决方案(新思科技VSO.ai)和芯片测试解决方案(新思科技TSO.ai),未来还将推出更多功能。Synopsys.ai在减少功能覆盖率漏洞方面实现10倍提升,IP验证效率提高30%。同时,DSO.ai最近率先实现了首个100次生产流片,这是一个重要的里程碑,标志着AI已经成为主流的半导体技术。
AI驱动型EDA解决方案为此提供了一个发展方向,它可以辅助开发团队提升工作效率。据德勤全球估算,全球几大半导体公司今年将在内部和第三方芯片设计AI工具上投入3亿美元,这一数字未来四年内每年还将增长20%。德勤全球在一篇分析文章中指出:“AI设计工具可以让芯片制造商突破摩尔定律的界限,从而节约时间和费用,缓解人才短缺问题,甚至还可以将旧的芯片设计应用于全新的设计之中。同时,这些工具还可以提升供应链安全,有助于缓解未来芯片短缺问题。”
DSO.ai是芯片设计实现方面的一款颠覆性AI应用,可以自主搜索PPA设计空间来寻找最佳解决方案。DSO.ai将AI技术集成到了芯片设计工作流程中,可以协助开发者大规模地探索各种方案,这在以前是无法做到的。
这种方法让AI技术有机会不断从训练数据中积累经验并学以致用,进而助力加快流片速度并实现PPA目标。AI的另一项关键优势是支持复用:从一个项目中学到的经验可以应用于未来的项目,从而提高设计流程的效率。该解决方案可在云端使用,更具灵活性、可扩展性和弹性,有助于客户处理繁重的工作量。据用户反馈,使用该解决方案后工作效率提升了3倍以上,功耗降低多达15%,裸片尺寸也大幅缩小。下图显示了DSO.ai在高性能数据中心CPU中的应用结果。
VSO.ai:优化“最后一公里”
VSO.ai可帮助验证开发者更快实现覆盖率收敛目标并发现更多错误。数字设计可能涉及的设计状态空间几乎是无限的,要一一检查这些空间,验证设计是否能按预期运行,人工操作是根本不可能实现的。回归流程可能需要数天时间,成千上万的测试会消耗掉所有计算资源。通常,最后的收敛工作非常耗费人力,而且人工分析庞大的数据也难以得出可行的见解。
VSO.ai为这一流程注入了全新活力。它通过检查RTL来推断覆盖范围,同时会高亮显示需要覆盖的区域,从而节省大量时间并确保测试具有高ROI。瑞萨电子(Renesas)表示,借助新思科技VCS®功能验证解决方案(Synopsys.ai的一部分)进行AI驱动的验证,他们在减少功能覆盖率漏洞方面实现了10倍以上的提升,同时IP验证效率提高了30%。
不断增加的设计复杂性和规模也影响了芯片的测试进度。在评估自动测试码生成(ATPG)工具的结果时,需要考虑以下三项关键指标:
X 关闭
Copyright © 2015-2022 时代机械网版权所有 备案号: 联系邮箱: 514 676 113@qq.com